

Nelson Mandela Metropolitan University

Generating guidance on public preferences for wind turbine farms in the Eastern Cape

Jessica Hosking MCom in Statistics Nelson Mandela Metropolitan University

4 November 2011

Nelson Mandela Metropolitan University

Invasion and Desertification

Climate Change

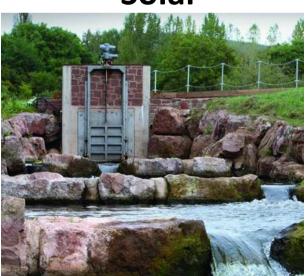
Extreme weather conditions

Mitigation Measures

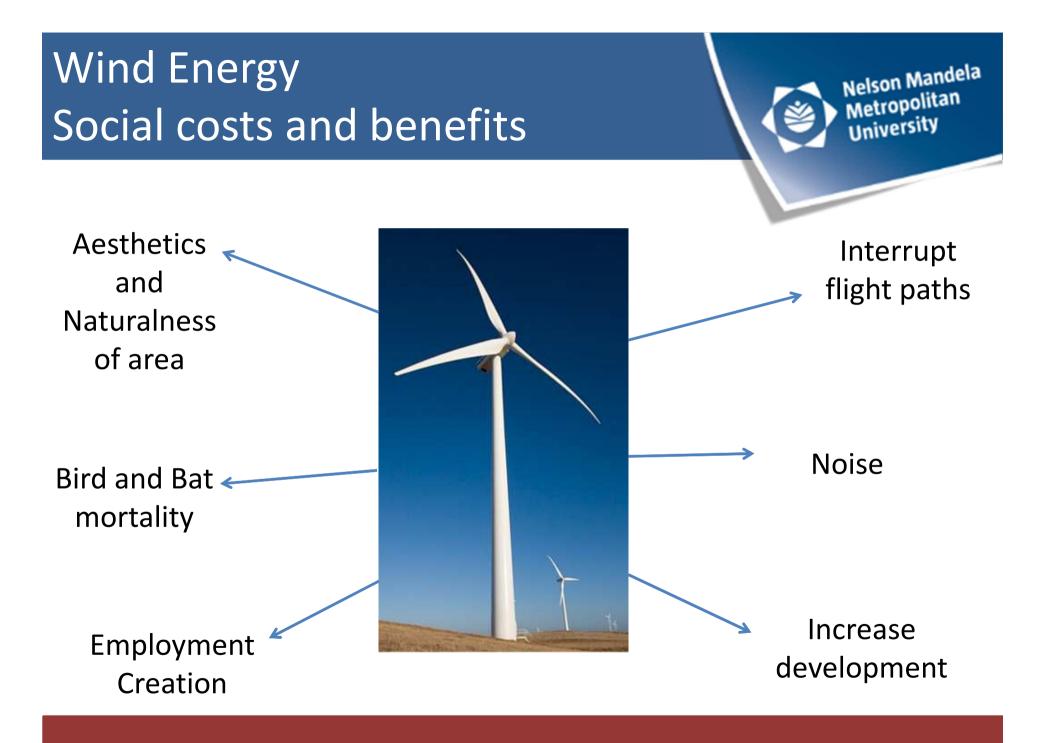
Temperature and rainfall changes

Mitigation options for South Africa

Nelson Mandela Metropolitan University



Solar



Hydropower

Wind

How do we quantify trade-offs between costs and benefits?

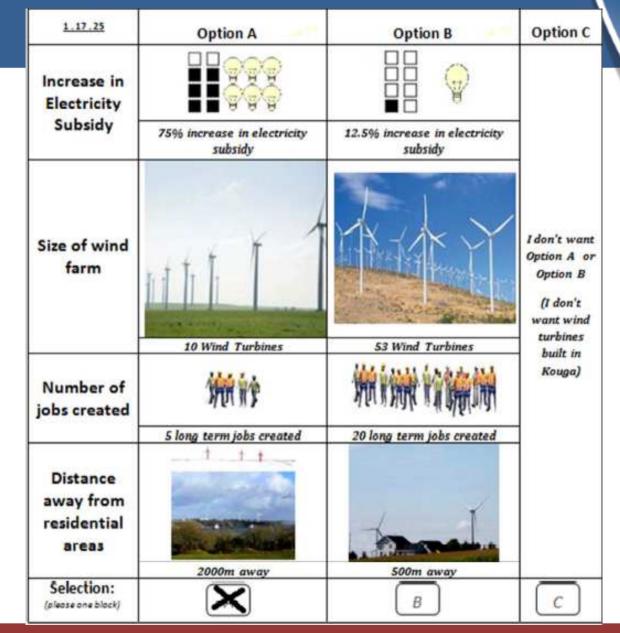
Choice Experiments

Definition

• Choice modelling or Choice analysis or Conjoint analysis

Nelson Mandela

University


- Predominantly used by businesses and governments
- Survey technique
- Stated preference

Structure

Each respondent is presented with a survey containing:

- One or more *choice sets*
- Each choice set contains one or more choice cards or alternatives
- Each choice card is made up of various attributes

Choice Example:

Nel: Me Un

Choice Experiments:

- Each individual will derive an amount of utility for each option in the finite set of alternatives
- Utility can be decomposed into 2 parts – an observed and unobserved part
- We assume that the unobserved component of utility is iid Type I extreme value Gumbel distribution

Utility

$$U_{option1} = V_{option1} + \epsilon_{option1}$$
$$U_{option2} = V_{option2} + \epsilon_{option2}$$

Gumbel Distribution

The density function $f(\epsilon) = e^{-\epsilon}e^{-e^{-\epsilon}}$ And cumulative distribution function $F(\epsilon) = e^{-e^{-\epsilon}}$

 The probability of the individual selecting alternative *i* is equal to the probability that the utility of alternative *i* is greater than or equal to the utility of alternative *j* after comparing all alternatives in the choice set.

$$Prob_{\alpha i} = Prob(U_{\alpha i} > U_{\alpha j}) \forall j \in j = 1, ..., J; i \neq j$$

- The same as: $Prob_{\alpha i} = Prob[(V_{\alpha i} + \varepsilon_{\alpha i}) \ge (V_{\alpha j} + \varepsilon_{\alpha j})] \forall j \in j = 1, ..., J; i \neq j$
- Rewritten as: $Prob_{\alpha i} = Prob[(\varepsilon_{\alpha i} \varepsilon_{\alpha j}) \le (V_{\alpha i} V_{\alpha j})] \forall j \in j = 1, ..., J; i \neq j$
- Assuming that the errors are IID with a Gumbel distribution. This would allow for the analyst to use the multinomial logit (MNL) model to determine the probability of choosing alternative *i* over alternative *j*:

$$P_{ij} = \frac{e^{\mu V_{\alpha i}}}{\sum_{j} e^{\mu V_{\alpha j}}}$$

Focus of project:

- 2 different socio-economic groups
- Environmental and social effects

Results:

Model	Descriptor	Coefficient	Implicit price	Std. error	p-value
Affluent	Size	-0.002	3.85	0.003	0.419
	Cluster1	7.539***		0.654	0.000
	Cluster2	7.862***		0.671	0.000
	Cluster3	7.898***		0.664	0.000
	Distance	0.251***	-450.74	0.022	0.000
	Subsidy	0.001**		0.001	0.032
	ASCa	0.086			0.241
	ASCb	0.075			0.346
	Log-likelihood	-829.181			
	No. of observations	976			
	Pseudo R ²	0.35	\frown		
Underprivileged	Size	0.003	-0.11	0.003	0.188
	Jobs	0.040***	-1.31	0.003	0.000
	Distance	-0.072**	2.36	0.021	0.002
	Subsidy	0.031***		0.007	0.000
	ASCa	9.012***		2.394	0.001
	ASCb	9.124***		2.398	0.001
	Log-likelihood	-863.777			
	No. of observations	1080			
	Pseudo R ²	0.38			

Results:			Nelson Mandela Metropolitan University
		Affluent	Underprivileged
Size	10 turbines to 20 turbines	R 38.50	-R 1.08
	20 turbines to 53 turbines	R 127.05	-R 3.56
Jobs	10 to 20 jobs	-	-R 13.09
	20 to 40 jobs	-	-R 26.19
Distance	0.5 km to 2 km away	-R 676.10	-R 3.55
	2km to 6 km away	-R 1 802.94	-R 9.46

- 1. A large wind farm, 0.5km away and wide apart (40 jobs created)
- 2. Small wind farm, 6km away and close together (10 jobs created)
- 3. A large wind farm, 2 km away and close together (10 jobs created)

	<u>Scenario 1</u>	<u>Scenario 2</u>	<u>Scenario 3</u>
Affluent	-R 1 096.50	-R 2 204.00	-R 1 114.00
Underprivileged	-R 91.97	-R 19.96	-R 88.51

- Differences between socio-economic groups
- Aesthetics important to affluent group
- Jobs and benefits important to the underprivileged group
- Poverty and large industry
- Policy options (distance, jobs)

Nelson Mandela Metropolitan University

Thanks for listening!

- Marginal values of attributes part worth's
- Marginal rates of substitution between attributes
- Low cognitive complexity
- Many possibilities for modelling decision making